ACE Scoring for 2005

- Scorer overview
- Pilot annotation scores

The Scoring Method

- The scorer scores the performance of a system by computing the "value" of the system's output using a three-step process:
 - The value of each system output element is computed for all possible sys-ref mappings, including misses (sys doesn't match any ref) and false alarms (ref doesn't match any sys).
 - 2. An optimum association (one-to-one mapping) of sys elements to ref elements is found so that the resulting bottom-line score is maximized.
 - 3. The bottom-line score is computed, along with a myriad of diagnostic information, including various attribute-conditioned performance statistics and various attribute confusion matrices.

"Cross-document" = "Real World"

- The scorer scores the value of inferences made about things in the "real world".
 - To be valuable these inferences must represent real-world elements that exist separate and apart from the document(s) that mention them.
 - Real world identity is represented in the apf file by means of a globally unique ID that is assigned to each (unique) real-world element.
 - The **scorer** always performs real-world scoring (i.e., "cross-document" scoring).
 - If document-level scoring is desired, then every element must be mentioned in only one document.
 This may be achieved by severing cross-document links in the reference data (by assigning a unique element ID to each set of element mentions that are restricted to a single document).

The EDR Scoring Formula

$$EDR_Value_{sys} = \sum_{i} value_of_sys_entity_{i}$$

$$value_of_sys_entity = Entity_Value(sys_entity)$$

$$\cdot \sum_{m} Mention_Value(sys_men_{m} \Rightarrow ref_men_{map(m)})$$

$$Entity_Value = \begin{cases} \min \left(\frac{EClassValue(sys)}{EClassValue(ref_{sys})} \right) \cdot \prod_{i} W_{Eerr-attribute(i)} \text{ when mapped} \end{cases}$$

$$EClassValue(sys) \cdot W_{E-FA} \text{ when entity is not mapped}$$

$$Mention_Value = \begin{cases} \min \begin{pmatrix} MTypeValue(sys_men), \\ MTypeValue(ref_men_{mapped}) \end{pmatrix} \cdot \prod_{i} W_{Merr-attribute(i)} \text{ when mapped} \\ -MTypeValue(sys_men) \cdot (W_{M-FA} \cdot W_{M-CR}) \text{ when mention isn't mapped} \end{cases}$$

The QDR Scoring Formula

$$\begin{split} QDR_Value_{sys} &= \sum_{i} value_of_sys_quantity_{i} \\ value_of_sys_quantity &= Quantity_Value(sys_quantity) \\ &\cdot \sum_{m} Mention_Value(sys_men_{m} \Rightarrow ref_men_{map(m)}) \end{split}$$

$$Quantity_Value = \begin{cases} \min\begin{pmatrix} QTypeValue(sys), \\ QTypeValue(ref_{sys}) \end{pmatrix} \cdot \prod_{i} W_{Qerr-attribute(i)} \text{ when mapped} \\ QTypeValue(sys) \cdot W_{Q-FA} \text{ when quantity not mapped} \end{cases}$$

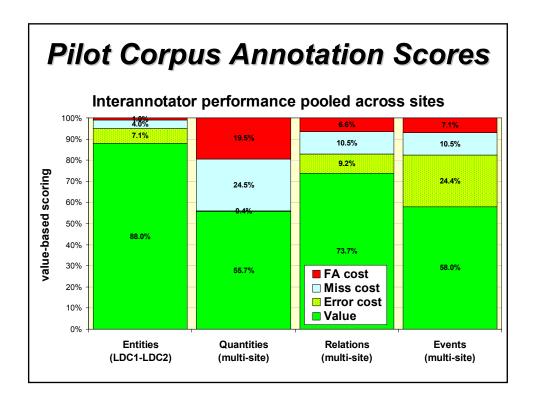
$$Mention_Value = \begin{cases} 1 \text{ when mapped} \\ \\ -W_{Q-FA} \text{ when mention not mapped} \end{cases}$$

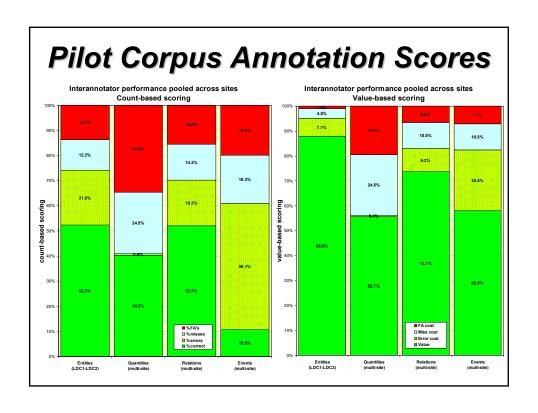
The RDR Scoring Formula

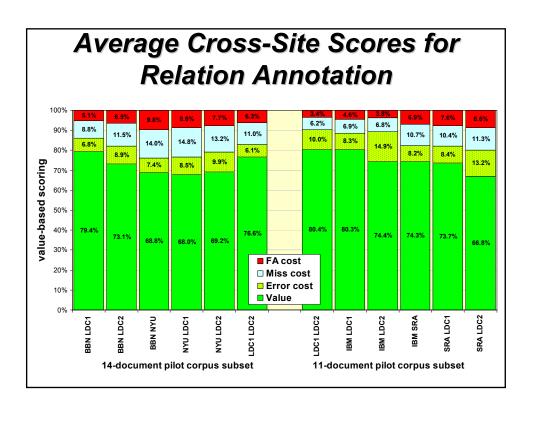
$$RDR_Value_{sys} = \sum_{i} value_of_sys_relation_{i}$$

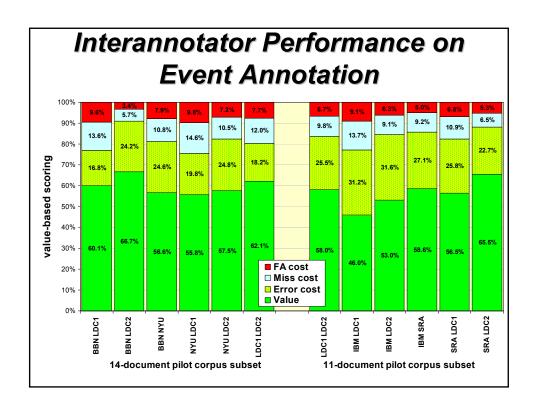
$$value_of_sys_relation = Relation_Value(sys_relation) \\ \cdot \sum_{a} Argument_Value(sys_arg_a \Rightarrow ref_arg_{map(a)})$$

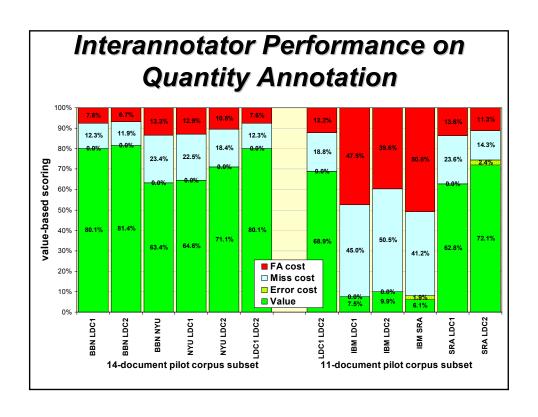
$$Relation_Value = \begin{cases} \prod_{i} W_{Rerr-attribute(i)} \text{ when mapped} \\ \\ W_{R-FA} \text{ when relation not mapped} \end{cases}$$


$$\begin{array}{rcl} \textit{Argument_Value} &= & \textit{Element_Value(sys_arg} \Rightarrow \textit{ref_arg)} \\ &+ \begin{pmatrix} \textit{Element_Value(sys_arg} \Rightarrow \textit{ref_arg)} - \\ \textit{Element_Value(sys_arg} \Rightarrow \textit{sys_arg}) \end{pmatrix} \cdot W_{\textit{A-FA}} \\ \end{array}$$


The VDR Scoring Formula


$$\begin{split} VDR_Value_{sys} &= \sum_{i} value_of_sys_event_{i} \\ value_of_sys_event &= Event_Value(sys_event) \\ &\cdot \sum_{a} Argument_Value(sys_arg_{a} \Rightarrow sys_arg_{map(a)}) \end{split}$$


$$Event_Value = \begin{cases} \min \begin{pmatrix} VModeValue(sys), \\ VModeValue(ref_{sys}) \end{pmatrix} \cdot \prod_{i} W_{Verr-attribute(i)} \text{ when mapped} \\ VModeValue(sys) \cdot W_{V-FA} \text{ when event not mapped} \end{cases}$$


$$\begin{array}{ll} \textit{Argument_Value} &= & \textit{Element_Value}(\textit{sys_arg} \Rightarrow \textit{ref_arg}) \cdot W_{\textit{Aerr-role}} \\ &+ \begin{pmatrix} \textit{Element_Value}(\textit{sys_arg} \Rightarrow \textit{ref_arg}) - \\ \textit{Element_Value}(\textit{sys_arg} \Rightarrow \textit{sys_arg}) \end{pmatrix} \cdot W_{\textit{A-FA}} \\ \end{array}$$

